
BETA BASIC NEWSLETTER No.9

**
PUTTING SHAPES ON A BACKGROUND

Well, of course that's easy! Just PRINT AT or PLOT and put a UDG
or a GET block on your background... The only problem is that a
rectangular area of background gets over-written even if the shape
you are trying to place is irregular; UDGs and GET blocks always
have a PAPER "fringe" unless the shape design fibs them completely.
You could use OVER 2, so that only the INK in the design is added to
the screen. This avoids background being over-written by "fringe",
but causes another problem: PAPER details inside your design are not
put on the screen either. The background "shows through" your
design. The solution used in many commercial games is to hold extra
information for each shape about which areas are "fringe" and which
are internal detail. This is usually done by having a stored "mask"
shape the same size as the original graphic, with the bit pattern
specifying "fringe" or "not fringe". Usually this is used to force a
"hole" of the desired shape in the background, before the details
from the original graphic are added. (This can now be done by a
process analogous to OVER 2, since there is no longer any background
to "show through".) The method allows irregular shapes to be added
to detailed backgrounds.

The program below shows the same idea in Beta Basic; limes 10 to
30 prepare a "mask" graphic in a$, and lines 40 to 100 prepare the
actual graphic in bb (a face - I'm sure you can do better!). Lines
110 to 1a0 provide a simple background. Originally I used OVER 2 and
the mast: to force a "hole" to INK, then OVER 1 and the mask to
reverse the "hole" to PAPER before placing the graphic in the
background with OVER 1. Then I realised that you can get the same
effect by reversing the INK and PAPER colours and leaving the hole
as (white) INK and omitting the reversing step. In the example
below, I added extra lines (160 and 210) to store the background and
replace it, which might be desirable in some cases - omit them if
you like. The PAUSE statements are also optional.

-2-

1 PAPER 0
 INK 7

10 CIRCLE 7,167,7
 20 FILL 7,167
 30 GET a$;0,175,2,2
 40 CLS
 50 CIRCLE 7,167,7
 60 CIRCLE 4,169,2
 PLOT 4,169
 70 CIRCLE 10,169,2
 PLOT 10,169
 80 PLOT 6,166
 PLOT 8,166
 90 PLOT 4,164
 DRAW 6,0,1
 100 GET b$;0,175,2,2
 110 KEYWORDS 0
 120 PRINT STRING$(704,CHR$ 134)
 130 KEYWORDS 1
 140 FOR n=1 TO 50
 150 LET x=RNDM(224),y=RNDM(144)+31
 160 GET c$;x,y,4,4
 170 PLOT CSIZE 16; OVER 2;x,y;a$ 180 PAUSE 0
 190 PLOT CSIZE 16; OVER 1;x,y;b$ 200 PAUSE 0
 210 PLOT x,y,c$
 220 NEXT n

**
PROC VDU - handling control codes.

This contribution is from Alan Salmon of Bristol. He says: 'Beta
Basic has most of the commands of BBC Basic, except VDU. So here is
PROC VDU, which prints a string of characters from the codes given.
So VDU 16,2,127 prints a red copyright symbol, equivalent to PRINT
CHR$ 16; CHR$ 2; CHR$ 127. In addition, you can put strings after
the VDU to display a whole string. Line 20 is obviously shorter than
PRINT "123"; CHR$ 10; CHR$ 8; CHR$ 8; "456". Another use is with
user-defined shapes, as in line 30.'

Most VDU commands I've seen have been harder to use than plain old
PRINT - but the versatility of this version is an advantage. You
need to be in a non-zero CSIZE to get the user-defined shapes
feature to work - e.g. CSIZE 8.

10 vdu 16,2,127
 20 vdu "123",10,8,8,"456"
 30 vdu 0,128,128,128,128,1:8,128,128,255

1000 DEF PROC vdu DATA
 1010 LOCAL a,a$,b$
 1020 LET b$=-'
 1030 DO UNTIL ITEM()=0
 1040 IF ITEM()=2 THEN
 READ a
 LET b$=b$+CHR$ a
 ELSE
 READ a$
 LET b$=b$+a$
 1050 LOOP
 1060 PRINT b$
 1070 END PROC

-3-

PROCs SHOW and SQUARE - scaling the display.

The next two procedures are from Jarmo Salonen (Tampere,
Finland). You will need to keep the first PROC for use with the
following one. In my previous career as a research scientist, I
spent quite a lot of time working out what scale to use for graphs
so that my data would just about fill a sheet of paper without
falling off the edge. PROC show solves this kind of problem by
allowing you to specify the minimum and maximum x and y values you
want to plot, plus an optional "safety margin" to give a border
round the plotting area. It then sets the special Beta Basic
variables XOS, YOS, XRG and YRG accordingly.

10 show 0,99,0,49
 20 PLOT 0,0
 DRAW 99,0
 DRAW 0,49
 DRAW -99,0
 DRAW 0,-49

100 DEF PROC show xmin,xmax,ymin,ymax,shr
 110 LOCAL xrange,yrange
 DEFAULT shr=.01
 IF shr<.01 THEN LET shr=.01
 120 LET xrange=xmax-xmin,yrange=ymax-ymin
 130 LET xrg=(1+shr)*xrange,yrg=(1+shr)*yrange
 140 LET xos=-xmin+shr/2*xrange,yos=-ymin+shr/2*yrange
 150 END PROC

Sometimes you might have an additional requirement for plotting:
that not only must all the data points fit on the screen, but that
the horizontal and vertical scales should be equal. An example would
be a floor plan or drawing in which square objects in the real world
should look square in diagramatic form on the screen. PROC square
takes care of this by fiddling with your supplied xmin, xmax, ymin
and ymax values before passing them to PROC show. Try the lines
below with and without the call to PROC square.

30 LET xmin=-8,xmax=2,ymin=l,ymax=11
 40 square xmin,xmax,ymin,ymax
 50 show xmin,xmax,ymin,ymax,.5
 60 PLOT -8,1
 DRAW TO 2,1

DRAW TO 2,11
 DRAW TO -8,11
 DRAW TO -8,1

200 DEF PROC square REF xmin, REF xmax., REF ymin, REF ymax
 LOCAL xrange,yrange,delta
 LET xrange=xmax-xmin,yrange=ymax-ymin
 210 IF xrange>256/176*yrange THEN
 LET yrange=176/256*xrange,delta=(yrange-(ymax-ymin))
 /2,ymin=ymin-delta,ymax=ymax+delta
 ELSE

LET xrange=256/176*yrange,delta= (xrange-(xmax-xmin))
 /2,xmin=xmin-delta,xmax=xmax+delta
 220 END PROC

-4-

CATALOGUING TO A STRING

Beta Basic 4.0 has a function, CAT$, which returns the RAM disc
catalogue, including type and length information, as a string. This
makes it simple to write improved catalogues, or to check if a
program name exists before saving or loading to RAM disc. Some
people have asked why I didn't include something similar for
Microdrives or disc drives. The answer is that experience has taught
me that device-specific programming (a Microdrive version, a
Discovery version, a Disciple version...) is difficult and time-
consuming. On the other hand, if we are less ambitious and decide to
forget about type information, file size and so on, it is possible
to write a general-purpose routine which will divert the characters
that normally appear on the screen during a CAT, and place them in a
string instead. (Of course, you can always read them off the screen
using SCREEN$, but this is slow and clumsy and requires you use the
screen.) The ideas used here may still be useful-even without Beta
Basic - you would have to replace the DPOKEs and DPEEKs with the
longer ZX Basic form, and replace LENGTH (0,"a$") with a suitable
address somewhere safe above RAMTOP. The characters placed at that
address would have to be PEEKed after the CAT was finished.

The CAT_TO procedure makes use of a little-known channel that is
not available to Basic, channel R. Normally, it is used to "print"
characters entered by the user to an internal buffer during line
entry, at a position indicated by the system variable K CUR. As each
character is added, the buffer is expanded and K CUR is incremented.
(This is how an input line is built up ready for syntax: checking
and execution.) If we POKE the address of this routine into the
channel P (LPRINT) area, any LPRINTed or LLISTed characters will be
sent to K CUR instead of the printer. Line 1020 does just this,
using the CHANS system variable to find the start of the channels,
and then adding 15 to get the start of the P channel. (There are 3
preceding channels of 5 bytes each - K, S and R.) The ROM address of
the R channel "add character" routine is 3973.

We don't actually want characters to go into a line entry buffer,
so line 1030 pokes K CUR to point to a string instead. Now anything
that would normally go to the printer, e.g. after CAT #3;1, will go
into the string. The text of the string is expanded as needed, but
the 2 bytes before the start of the string that store its length
(used by the ROM) will not be updated; line 1050 does the required
updating, by looking at how far K CUR has advanced from the start of
the string. Finally, line 1060 returns the P channel to normal (for
Beta Basic).

Now look at the demo lines starting at 10; they are a bit of a
hatch-patch to give you some ideas. Because the procedure uses REF,
the catalogue can be sent to any string - in this case, c$. If you
simply PRINT c$, you will see the catalogue, but I have used a FOR-
NEXT loop here to print each filename in turn using two columns; an
array of names is set up at the same time. Microdrive and Discovery
CATS have a 10-character cartridge/disc name, then 2 carriage
returns, then a series of names padded with spaces to 10 characters,
each followed by a carriage return, and finally a carriage return
followed by the free space. Other storage systems will probably
differ. Names in an array are more convenient in some ways - several
such arrays could be JOINed together and SORTed, for example. The
final demo lines show how to check if a file exists before doing a
SAVE.

-5-

10 cat_ to c$
 20 DIM r$(INT (LEN c$-12)/11,10)
 30 FOR n=13 TO LEN c$-10 STEP 11
 40 PRINT c$(n TO n+9),
 50 LET r$(n/11)=c$(n TO n+9)
 60 NEXT n
 70 DIM n$(10)
 80 LET n$="test"
 90 IF INSTRING(13,c$,n$) THEN PRINT "file exists!"
 STOP

100 SAVE 1;n$

1000 DEF PROC cat-to REF a$
 1010 LET a3=""
 1020 DPOKE DPEEK(23631)+15,3973
 1030 DPOKE 23643,LENGTH(0,"a$")
 1040 CAT #3;1
 1050 DPOKE LENGTH(0,"a$")-2,DPEEK(23643)-LENGTH(0,"a$")
 1060 DPOKE DPEEK(23631)+15,64423
 1070 END PROC

PROC Test_key

This is from Michael Field (Episkopi, BFPO 53). He says:
"I originally wrote this procedure to test for the common Y/N
response but ended up with something a bit better. The procedure
waits for specific keys to be pressed then returns the key pressed
to the main program in upper case in the string specified. Note: the
LOOP: END PROC must be on a separate line."

10 Test_key "AB12",a$
 20 PRINT a$

100 DEF PROC Test-key t$, REF q$
 LOCAL test
 DO

GET q,$
 LET q$=SHIF$(1,q$)
 LET test=INSTRING(I,t$,q$)
 IF test THEN
 LET q$=t$(test)
 EXIT IF 1
 110 LOOP
 END PROC

t$:= Key(s) to be tested for. Note: must be in upper case.
q$:= String that the key pressed is to be returned in.

The example tests for keys aAbB12 and returns the trey pressed in a$
in upper case.

-6-

PROC PIE - making pie charts.

This method of presenting information is very popular these days.
The program was sent in by Alain Vezes (Albi, France); it makes it
very easy to convert numbers into a display like the one
illustrated. It was written with Beta Basic 4.0, but it will run
under BB 3.0 and give a "skeleton" pie chart if you omit the FILL
USING statement in line 170. (You could also omit line 70.) Line 70
sets up the required number of FILL patterns, using letters, but you
could also use checks, stripes or other patterns, as explained in
the BB 4.0 manual, provided you design enough unique types.

10 INPUT "number of items?";nb
 50 CSIZE 4,8
 60 DIM i(nb)
 DIM a(nb)
 DIM a$(nb,39)
 70 FOR n=1 TO nb
 CLS

LET c$=CHR$ (n+64)
 PRINT CSIZE 4,9;c$;c$;c$;c$`c$;c$;c$;c$
 GET a$(n);0,175,2,2
 NEXT n

CLS
 80 FOR n=1 TO nb
 INPUT "value ";(n);"? ";i(n)
 NEXT n

90 LET tot=0
 100 FOR n=1 TO nb
 LET tot=tot+i(n)
 NEXT n

110 FOR n=1 TO nb
 LET a(n)=i(n)/tot*100
 PRINT TAB 49;n;TAB 51;":";i(n);TAB 57;"=";
 INT (a(n)+.5);"%"
 NEXT n

120 pie 90,90,60,nb

-7-

140 DEF PROC pie x0,y0,r,nb
 150 CIRCLE x0,y0,r
 PLOT x0,y0
 DRAW 0,r

160 LET a0=PI/2
 170 FOR n=1 TO nb
 LET c$=STR$ n
 LET a=a0-2*PI*a(n)/100
 LET b=a0-PI*a(n)/100
 PLOT x0,y0
 DRAW TO x0+r*COS a,y0+r*SIN a
 FILL USING a$(n),x0+3*r/4*COS b,y0+3*r/4*SIN b
 PLOT x0+6*r/5*COS b,y0+6*r/5*SIN b;c$
 LET a0=a
 NEXT n

180 END PROC

**
PROC REMKILL - Removing REM statements.

This procedure gives a facility I never got round to including in
BB's "toolkit" commands. It uses the system variables PROG (23635)
and VARS (23627) which point to the start and end of a Basic
program, to guide a search for REM lines. We cannot simply search
for 'REM' (CHR$ 234) by itself, because the invisible form of
numbers might contain one; e.g. LET z=234 is followed by an
invisible CHR$ 234. Instead we look for an end-of-program-line
marker (CHR3 13), don't worry about the next 3 bytes (which will be
a line number and the least significant byte of a line length), then
insist on a CHR$ 0 (which will be the most significant byte of a
line length) before the REM. All this reduces any ambiguity and
allows REMs at the start of a line (only) to be found reliably. The
search will fail to find REM lines longer than 255 characters, but
this shouldn't matter.

Once the REM has been found, the preceding line number can be
PEEKed and DELETE can be used to remove the line.

10 DEF PROC remkill
 LET x=DPEEK(23635)
 DO

LET x=INSTRING(x,MEMORY$()(TO DPEEK(23627)),
 CHR3 13+"###"+CHR$ 0+CHR$ 234)
 EXIT IF x=0

LET lnum=PEEK (x+1)*256+PEEK (x+2)
 PRINT "deleting ";lnum
 DELETE Inum TO lnum
 LOOP

END PROC

**
PRINTERS

Reader John Luby asks if anyone can recommend a printer interface
to work with a Spectrum 128/Seikosha GP100A/Beta Basic combination.
He doesn't like his current Dk'tronics interface; COPY doesn't work
properly. (Incidentally, I think I've sorted out some problems John
had with BB 4.0 and this interface, if anyone is interested.)

-8-

PROC PULL - a flexible pull-down menu procedure.

This is one of a set of procedures concerned with input checking,
windows and elegant menu handling, sent in by Paul Field of Halsham,
N. Humberside. There isn't space for them all, but I give Paul's
favourite. PROC PULL uses a list of menu options passed via DATA. An
area of screen is stored and a window big enough to take the number
of options is generated, with a shadow frame round it. Any key
except ENTER advances the selected option cursor; ENTER causes the
original screen area to be restored. The selected option number is
POKEd to 65535, from where it can be PEEKed. (I think Paul did it
this way because you cannot mix, a DATA list and a REF parameter
easily. However, he also suggested that "choice" could be made a
global variable by removing it from the LOCAL list.) My line 10 does
a LIST simply to provide a background to "pull down" onto. Usually,
you would use a menu like this to control something like a graphics
program, where you don't want to mess up the display. The global
variable AA determines how far right the menu appears - try setting
it to 2, 3 or 4 before calling the procedure.

10 LIST TO 110
 20 pull top item,second,third,fourth

100 DEF PROC pull DATA
 LOCAL options,a$,q$,b$,p$,a,b,c,d,choice
 DEFAULT aa=1
 110 DIM q$(10)
 LET a$="",options=0
 DO

READ LINE q$
 LET q$(1)=SHIFT$(1,q$(1))
 LET a$=a$+q$+CHR$ 13,options=options+1
 LOOP UNTIL NOT ITEM()
 LET a=(aa-1)*56+8,b=options*8,c=167,d=72
 120 GET p$,a-1,c,10,options+1;1
 WINDOW 2,a,c,d,b
 LET a=a-1,d=d+1
 PLOT a,c

DRAW 0,-b
 DRAW d,0

PLOT a+1,c-b-1
 DRAW d,0

DRAW 0,b
 WINDOW 2
 BRIGHT 1
 CSIZE 7,8
 OVER 2

CLS 2
 PRINT a$(TO LEN a$-1);
 AT 0,0; PAPER 2; INK 7; OVER 2;" "
 130 LET choice=1
 DO

GET b$
 EXIT IF b$=CHR$ 13
 ROLL 2

LET choice=1+choice*(choice<options)
 LOOP

WINDOW 0
 CLS 2

PLOT OVER 0;a,c;p$
 POKE 65535,choice
 END PROC

-9-

Charles Buszard also sent a worthy contribution on a similar
theme. Some of his ideas could be useful in adapting PROC PULL. For
example, you could use up and down cursors to give control of the
selection cursor in both directions, and the cursor could be a bar
of colour by matting line 120 finish with more spaces inside the
quotes. Charles also noted that READ LINE has a problem - it allows
menu options to be passed without quotes, but an option like 'save
file' will turn into ' SAVE file' and cannot be entered without
quotes. The solution is either to put all options in quotes and just
use READ, or put quotes around problem options only, and strip them
off after READ LINE if needed.

**
PROC DISTORT - stretching screen pictures.

Some time ago I saw a review of a flashy graphics system in
Personal Computer World magazine. One of the facilities allowed the
user to stretch the image in any direction. I wondered if this would
be possible in Beta Basic, using ROLL or SCROLL, and set to work,
with enthusiasm. It turns out to be fairly easy to achieve a left or
right distortion, but harder in the vertical dimension, since ROLL
will not handle a single column of pixels. However, it proved
possible to use one character column as a working area, rolling a
column of pixels into it, and then moving the character column up or
down. It looks odd, but it works! I wrote a PROC GRID to give a
screen picture for DISTORT to work on, but you could just do a LIST
or load a screen picture (as I did for the illustration). The
variable f in lime ?0 controls the degree of distortion. Of course,
you can distort the same picture in several directions. The method
of specifying left, right, up or down using DATA in the DEF PROC and
a control words list in a string searched by INSTRING might be of
interest. The words are arranged at regular locations (1,5,9 and 13)
in the string so that the relevant ROLL code can be easily derived.

What would you want to use this PROC for? Well, I looked back at
the PCW article and it didn't say... but having written it, I'll
publish it anyway! (I get mail saying things like "I liked the item
on ----, very clever. Like me, your contributors seem to like
mucking about" but also, "I think some of your contributors are so
carried away by their own cleverness that they forget what they are
doing it for!" which may be the same message expressed in different
words.)

-10-

10 grid
 20 distort left
 30 PAUSE 50
 40 distort right
 50 PAUSE 50
 60 distort up
 PAUSE 50
 distort down

70 DEF PROC distort DATA
 80 LOCAL a$,d,f,n
 90 LET f=50
 100 READ LINE a$
 LET a$=SHIFT$(2,a$)
 110 LET d=(INSTRING(1,"leftdownup right",a$)+19)/4
 120 IF d=5 OR d=8 THEN
 FOR n=0 TO 175
 ROLL d,SINE(n/175*PI)*f+1;0,n;32,1
 NEXT n

130 IF d=6 OR d=7 THEN
 FOR n=0 TO 247
 ROLL 5
 ROLL d,SINE(n/247*PI)*f+1;248,175;1,176
 ROLL 5,7;248,175;1,176
 NEXT n

ROLL 5
 140 END PROC

150 DEF PROC grid
 160 LOCAL x,y
 170 FOR x=0 TO 255 STEP 8
 180 PLOT x,0
 DRAW 0,175
 190 NEXT x
 200 FOR y=0 TO 175 STEP 8
 210 PLOT 0,y
 DRAW 255,0
 220 NEXT y
 230 END PROC

**
DISC NEWS

The Beta Disc Users Club that I mentioned in a previous issue
(for Technology Research Ltd. disc interface users) has closed down
due to lack of support. I suspect that many former users have
connected their drives to the newer and more friendly Disciple or
PLUS D interfaces. I have spent some time further adapting BB 3.0
and BB 4.0 for these interfaces. Beta Basic is no longer turned off
by disc errors, LLISTing works normally, and disc commands can be
used quite normally in a program. Not implemented are DEFAULT
(device), slicer SAVES to disc, EOF and ON ERROR with disc errors.
The required alterations have grown too big to publish here; if you
want a Disciple/PLUS D version on tape, return your old tape and £
2.00 and I'll exchange it.

-11-

BETA BASIC 4.0 - SORT bugs and a CSIZE bug.

H.N.S. Wijegoonawardena (Edgware, Middx.) reported that Beta
Basic 4.0 did not SORT INVERSE properly on strings starting with
CHR$ 0. Such strings sound a bit obscure, but will often be produced
if you are coding numbers as strings using CHAR$. The problem
resulted from an "improvement" I made to the sort routine to keep
the speed as high as possible despite additions to cope with RAM
disc sorts. John Luby (Duns, Berwickshire) reported other problems
when sorting big RAM disc files (over 16K). These may not be obvious
(depending on exactly how the strings cross 16K page boundaries) but
can be severe (reset!). If you have BB 4.0 version 3 or less (PEEK
47272) and want to correct these SORT problems, then write for a
POKE sheet.

If you have BB 4.0 version 1, and you enter:

CSIZE 4,9: FOR n=1 TO 30: PRINT n

you will find the value of N looks odd after the screen scrolls. To
my initial surprise, this problem can be solved by entering the
"patch" published in issue 7, page 3. (Note: Once you have used such
a "patch" program, NEW, then MERGE Beta Basic's loader, and RUN to
save the modified program. There is no need to include the Basic
lines of the "patch" in your programs.)

**
MEMORY USAGE

Here's a little routine to give a variety of useful or
interesting details about memory usage, using data from system
variables. The smallest value for variables length you will see is
36, due to XOS, YOS, XRG and YRG, and 4 bytes used by the procedure.
The size of BASIC's GOSUB/DO/PROC stack will be at least 3, due to
PROC status's return address.

100 DEF PROC status
 110 PRINT "Program length: ";DPEEK;(23627)-DPEEK:(23635)
 120 PRINT "Variables length:";DPEEK(23641)-DPEEK(23627)-1
 130 PRINT "Free memory:";MEM ()
 140 PRINT "BASIC stack:";DPEEK(23730)-DPEEK(23613)-3
 150 PRINT "RAMTOP:";DPEEK(23730)
 160 END PROC

**
TEXT JUSTIFICATION

Ettrick Thomson (Aldeburgh) sent in a text justification
procedure that improves on Mike Eida's contribution in issue 8 by
distributing the "padding" spaces as evenly as possible. I had had
similar thoughts, but worked on a routine that is only applicable to
dot-matrix printers. This allows inter-word spaces to be, say, 1.5
spaces in width, at the cost of much slower printing. I have used it
on my Tasword files for this Newsletter - what do you think? I may
publish it in the next issue.

**
SHORT TIP

From Ettrick Thomson: If you want to alter a program without
disturbing a laboriously built-up display, you can KEYIN the new
line without an automatic listing being produced. (Better have a
printout of the program handy, as a guide - Ed.)

-12-

MATHS OPERATIONS ON ARRAYS

A large part of the time taken by many computer programs in
business and science is due to repeated identical operations on each
number in an array or set of arrays. Math’s chips, or parallel
processing, can be used to reduce the time taken. Well, we can't use
that on the Spectrum, but improved software can increase the speed
of array operations considerably; we can get quite a good increase
in speed simply by using machine code for the main loop that deals
with each number in the array in turn. I know that at least some
readers are interested in handling numeric arrays, so I am providing
a basis for experimentation which gives about a 10-fold speed
increase.

To help the explanation, I give below the BASIC that this machine
code is equivalent to. There is no need to type these lines in! We
might add together the contents of two arrays (let's call them the
first and second arrays) and put the results into a third array. If
each array has size numbers in it, we might use something like this
to do it:

10 FOR n=1 TO size
 20 LET c(n)=a(n)+b(n)
 30 NEXT n

Obviously we can alter the "+" to or "/" if we prefer. If we wanted
to add a constant in place of the numbers from the second array,
then line 20 could be:

20 LET c(n)=a(n)+b(1)

The first number in b() would be preset to the constant we want. (I
know you would normally use e.g. "x" instead of "b(1)" but the
latter is closer to the machine code.) If we want the results to be
placed into the first array instead of the third array, we just
alter "c(n)" to "a(n)" and we don't need a third array anymore. I
hope this is simple - now let's look at the machine code version.

PROC setup POKEs the machine code into the UDG area; it only
needs to be called once, but in any case it does nothing if it
decides the code has been POKEd already. Line 10 to 70 create some
arrays and demonstrate the procedure. The procedure obtains the
addresses of the arrays from the array names, which are passed by an
unusual method; a DATA list is used instead of conventional
parameters. This is neccessary because of a problem with passing
arrays by reference - you cannot pass the same array twice. If you
do, Beta Basic will try to "rename" the same passed array with two
different names (which would be specified in the DEF PROC statement)
and you will get odd results. For the present application, we might
well want to pass the same array several times; for example, when
adding an array to itself. Besides, we don't need to do any
conventional array handling inside the procedure - all we need is
the start addresses of the arrays. LENGTH can obtain these from a
string variable containing the array name, plus "()".

The machine code is POKEd with the three start addresses which
tell it where to get the first number and the second number, and
where to put the result after adding, subtracting, multiplying or
dividing them. Some or all of these addresses may be the same. (You
can work out the address of an individual number if you wish from
the length of a number, which is 5

-13-

bytes. If you want to use two-dimensional arrays, it will be useful
to know that the array elements occur in the order 1,1 1,2 1,3...
etc. 2,1 2,2 2,3 . . . etc. in memory.)

The POKE in line 1070 gives the size of the array containing the
"first" numbers to the machine code. This determines how many
numbers to deal with. WARNING!! The array to contain the results
should be at least as long as the "first" array! Normally, all three
arrays (if different arrays are used) will be the same length. An
exception occurs when you want to use a constant number in place of
the "second" array - in this case, you still need an array to allow
LENGTH to produce an address, but the array need be only 1 number
long. You could DIM b(1): LET b (1)=10 and use the code to add 10 to
every number in an array a().

The POKE in line 1080 determines which operation to perform. (The
number is a code used by the ROM's calculator.)

10 setup
 20 LET s=50
 DIM a(s)
 DIM b(s)
 DIM c(s)
 30 FOR n=1 TO s
 LET a(n)=n
 NEXT n
 40 FOR n=1 TO s
 LET b(n)=n*2
 NEXT n
 50 PRINT "working..."
 60 matrix a,b,c
 70 FOR n=1 TO s
 PRINT c(n)
 NEXT n

1000 DEF PROC MATRIX DATA
1010 LOCAL a$,b$,c$,c
1020 READ LINE a$, LINE b$, LINE c$
1030 LET c=USR "a"
1040 DPOKE c+1,LENGTH(0,a$+"()")
1050 DPOKE c+4,LENGTH(0,b$+"()")
1060 DPOKE c+8,LENGTH(0,c$+"()")
1070 DPOKE c+11,LENGTH(1,a$+"()")
1080 POKE c+28,15
 REM l5=ADD,3=sub,4=mult,5=divide
1090 DPOKE c+23,0
 REM 65531 for consts
1100 RANDOMIZE USR c
1110 END PROC

1120 DEF PROC setup
1130 IF PEEK USR "a"<>33 THEN
 RESTORE
1140 FOR n=USR "a" TO USR "a"+50
 READ a

POKE n,a
 NEXT n
1140 DATA 33,0,0,17,0,0,221,33,0,0,1,0,0,197,213,205,180,51
 ,227,205,180,51,1,251,255,9,229,239,15,2,56,235,221,22
 9,209,1,5,0,221,9,237,176,209,225,193,11,120,177,32,21
 9,201
1150 END PROC

-14-

BETA BASIC AND THE PLUS 3

I have spent some time recently pulling the +3's ROMs (about 60K
of them!) to bits - my printer got pretty hot doing disassemblies.
It doesn't look too difficult to get Beta Basic working on it. It
has a nice operating system to make life easier for me - adding
serial and possibly random files (left out of the Basic!) should be
fairly simple. As for the machine itself, the disc drive takes about
9 seconds to load 16K, which is a bit faster than an OPUS Discovery
but less than a quarter of the speed of a Disciple or a +D
interface. The drive seems reliable, the keyboard is fine, and it is
nice to have RS232 and Centronics built in. Unfortunately, the
editor gives me high blood pressure! I don't think the machine has
sold very well so far. Personally, I'd hang on for a price fall if
you can. I am sure the +3 could be sold for £160 or less if need be.
At that price, it would be a good buy.

The ROM error messages include "+2A does not support format" and
I think a +2A may appear, with a built-in tape recorder, but the
ability to add an external disc drive.

**
READERS' LETTERS

Dear Andy,

I have discovered 2 bugs (I hope). (A listing was enclosed that used
INKEY$ and PAUSE, amongst other commands. It didn't work reliably.
Ed.) When LIST FORMAT 2 is in operation long lines are not correctly
indented when CSIZE 5,8 is being used.

Paul Field, Halsham, N. Humberside.

There is a ROM bug in PAUSE that may be important; try the example
below

10 IF INKEY$<>”" THEN GOTO 10
 20 PRINT LEN INKEY$
 30 PAUSE 200

If you enter RUN (ENTER) and keep your finger on the ENTER key, the
program will wait for you to remove your finger. Line 20 will print
0, because no key is being pressed. Then you expect a 4 second
delay, but in fact there is none. This is because PAUSE warts for a
"key has been pressed" flag in the system variables to be set. In
some circumstances, the PAUSE command is entered with the flag
already set, so no PAUSE actually happens. PAUSE should reset the
flag to "no key pressed" initially. He can fix this with the "patch"
below which does the resetting before the ROM routine is entered. I
just put the code in the UDG area, but you could incorporate it
permanently into BB's code if you like.

10 LET X=USR "A"
 20 DPOKE 64832,X
 30 FOR N=X TO X+9
 40 READ A
 POKE N,A

NEXT N
 50 DATA 6,0,0,0,205,79,31,195,58,31
 60 DPOKE X+2,X+4

-15-

The lack of indentation with CSIZE 5,3 I don't understand, but I
guessed it might be something to do with odd pixels "left over"
after the screen width of 256 is divided by 5. So I tried:

WINDOW 1;1,175,255,176: WINDOW 1

and it cured the problem.

Dear Dr. Wright,

The otherwise admirable procedure VKILL (no. 8) has a bug - try to
vkill the variable S! The trouble is that when posh in line 1080
looks for the FOR-NEXT version of S it finds it among the first
seven bytes of the variables area where it is part of Beta Basic's
variable XOS with value 0, so the POKE of line 1090 creates chaos. A
solution is to skip BB's use of the variables area by inserting +32
after the DPEEK(23627) of line 1080. It is to my liking also to
replace the GOTOs of lines 1030 and 1040 with ENDPROC. (I am not
sure if it is always safe to do that in such circumstances but is
seems so in this instance.)

G. Jackson, Cardiff

Thanks for pointing this out! Your cure will fail, though, in any
case where a multi-letter numeric variable has a value of zero and
ends in a letter which matches the single-letter variable you are
trying to delete. It would be better to make the value we search for
much more unusual than zero - how about 2.961784785E-39? That is
coded in the variables area as 5 successive CHRS 1's. (How do I know
such exotica? Well, I used LENGTH (0,"x()") to find a numeric array
and then PEEKed and POKed a bit, in combination with altering the
value of x(l) and printing it.) If you alter the two KEYINs in line
1060 so that "0 to 0" becomes "2.961784785E-39 to 1" and “=0"
becomes “=2.961784785E-39”, and replace the five CHRS 0's in line
1080 with STRIHGS(5,CHRS 1) all will be well.

Multiple END PROCs will work O.K. in all cases. The only problem is
that Beta Basic will no longer be able to "skip over" procedure
definitions when it comes to them; you will have to put a STOP
before your procedures, or jump round them. (BBC Basic always
requires this, but Beta Basic has the sense to skip to the next END
PROC if it runs into a DEF PROC when the procedure hasn't been
called.)

Dear Andy,

You may think it worth while to include the results of my delving
into the Kempston E Centronics interface to round out the last
paragraph of the BB 4.0 manual. The POKES to control the status of
the interface (without using the COPY: REM.. system) from within a
program are as follows:

POKE 23729 ,0 CR To reset as at power-up.
 ,10 +LF To initiate line-feed at each CR.
 ,16 ESC Equivalent to doing LPRINT CHR$ 27;
 ,32 � To give double-height print.
 ,64 TOKENS OFF

Any sum of the above values provides any needed combination.

S. Charles Bustard, Chorleywood, Herts.

-16-

The list below was kindly prepared by Charles Buszard. It is a
listing of the procedures in Newsletter issues 1 to 7; the REF
column gives issue/page number.

**

BETA BASIC NEWS-LETTER PROCEDURES; ALPHABETICAL ORDER.

PROCNAME REF. CATEGORY PROCNAME REF. CATEGORY
G & K 7/05 KEYWORD control keyprint 1/14 INPUT routine
adr 4/11 Screen pixel kill 4/08 DELETE block.
axes 3/05 Scaled graph leave 5/03 (See smenu)
binar 1/02 BIN/DEC convert locate 5/09 (See errmes)
bold 5/07 Printing, bold. lplot 4/13 PLOT, lo res.
bplot 1/04 PLOT bold pixel m/c 4/13 CODE, storage.
byte 7/05 Hi/Lo split. maxmin 2/11 (See ends)
c 3/01 CAT in WINDOW. md 2/08 M/drive command
call 2/04 CALL for USR. menu 5/04 Menu themes.
case 3/04 In CASE of - - mirror 7/04 Mirror image.
centre 3/02 Centre a string off 1/05 Andy's joke.
centre 6/08 Centre improved os-num 5/11 Old-style Nos.
chardes + 4/10 Char. designer. overwindow 1/02 WINDOW command.
countlines 2/15 (See slist) paglist 4/12 LIST, by pages.
cpy 4/04 COPY at 64 cpl. part copy 2/15 (See slist)
cursor 6/11 Cursor, j-stick perm, etc 6/03 Permutations.
decolor 5/15 Remove controls plist 4/05 LIST, PROCs.
dir 7/02 Disciple disc. poly 2/06 (See ellipse)
display 4/10 (See chardes) polygon 2/06 (See ellipse)
down 3/06 PRINT downwards pplot 1/08 CSIZE PLOT.ting.
dump 4/07 COPY, graphics prtstr 3/02 PRINT strings.
ed 4/10 (See chardes) ptime 1/03 Timer, print.
edge 7/05 BORDER designer readnumber 3/08 INPUT command
ellipse 2/06 DRAW ellipse. readstring 3/09 (See readnumb.)
end2 5/14 CLEAR stack. repeat 5/08 LOGO-style;
end-repeat 5/08 (See repeat) rotate 4/06 Chars. command.
ends 2/10 Mark an array. seqa, etc 6/06 Sierspinski;
errmes 5/09 Error message. set+reset 6/07 Bit handling.
evolution+ 6/05 Evolution model short 5/02 String handling
fatchar 5/07 Characters, fat short 6/08 Improved short.
gdraw 3/06 (See axes) show 2/02 (See hide)
gplot 3/06 (See axes) shrink 1/05 Screen handling
grab & put 1/07 Screen control. sketch 1/04 Cursor control.
gtime 1/03 Timer, get val. slist 2/14 CSIZE LLISTing.
hanoi 4/14 More on Hanoi. smenu 5/03 Menu theme.
hanoi 3/03 Recursivity. sound 2/05 Sound effects.
hide 2/02 PROCS, hidden. splay 7/06 Music, 128k.
hilite 5/08 Hilite on PLOT. strip 5/15 (See decolor)
import 5/06 Tasword 3 usage sv 2/05 SAVE, Beta disc
invert 2/02 (See hide) torus 7/11 Visual display.
italics 5/07 PRINT, italics udg 1/03 Udg handling.
jump 7/04 To statement. wdraw 4/03 (See windo)
key 7/05 Any key continu windo etc 4/03 WINDOW design.
keyboard 7/12 Music, 48k. ztime 1/03 Timer, zero.

**
Send all contributions, questions and correspondence to:

BB NEWSLETTER, 24 WYCHE AVE., KINGS HEATH, BIRMINGHAM B14 6LQ

Scanned, Typed, OCR-ed, and PDF by
Steve Parry-Thomas 28th October 2004.
This PDF was created to preserve this

Newsletter for the future.
For all ZX Spectrum, Beta Basic
And www.worldofspectrum.org users

(PDF for Michael & Joshua)

http://www.worldofspectrum.org/

